![banner_ad_1](/web/img/banner_ad_1.jpg)
一、空瓶能換多少水
(1)空瓶換水問題基本題型。
我們一起來看一下空瓶換水問題當(dāng)中的基本題型,有N個空瓶可以換1瓶水,現(xiàn)在有M個空瓶,可以免費喝到多少水?
做這種問題,重要的一步是要“瓶”,“水”分離,我們拿例子來看一下。
【例1】3個啤酒空瓶可以換1瓶啤酒,現(xiàn)有14個啤酒空瓶,最多可以免費喝到啤酒為?( )
A.2瓶 B.4瓶 C.7瓶 D.8瓶
【解析】答案:C。
方法一:現(xiàn)有有啤酒空瓶14個,每3個空瓶可以換1瓶酒,則首先可以換14÷3=4瓶酒余2空瓶,4瓶酒又產(chǎn)生4個空瓶,則共剩下4+2=6個空瓶,還可以再換6÷3=2瓶酒,這2瓶酒又可以產(chǎn)生2個空瓶,但無法直接換酒,這時我們可以考慮先借1個空瓶,換完酒后再將空瓶返還,所以共計喝酒4+2+1=7瓶酒。
如果將瓶與酒分離該怎么做:
方法二:3個空瓶可換1瓶啤酒,我們需要喝到的是其中的酒,所以將瓶與酒分離。構(gòu)成等式:3空瓶=1瓶酒,也就是3空瓶=1空瓶+1酒,整理一下,2空瓶=1酒,所以兩個空瓶就可以喝到1酒而不產(chǎn)生額外的空瓶,所以共可以喝酒14÷2=7瓶酒,所以選擇C選項。
那么大家之后再做類似問題的時候,就可以利用第二種思路去做。
我們將其整理成公式,可免費換到的酒=M/(N-1)。
【例2】某商店規(guī)定每4個空啤酒瓶可以換1瓶啤酒,小明家買了24瓶啤酒,小明家前后最多能喝到多少瓶啤酒?( )
A.30 B.31 C.32 D.33
【解析】答案:C。24瓶啤酒喝完后可得空瓶24瓶,所以通過4個空瓶換一瓶啤酒可以喝到免費啤酒24÷(4-1)=8,所以共可以喝到24+8=32瓶啤酒。
(2)空瓶換水問題的變形問題
【例題3】5個汽水空瓶可以換一瓶汽水,某班同學(xué)喝了161瓶汽水,其中有一些是用喝剩下來的空瓶換的,那么他們至少需要買汽水多少瓶?( )
A.129 B.128 C.127 D.126
【解析】答案:A。共喝到打的汽水161瓶,其中包括自己買的以及汽水空瓶換的,通過“瓶”,“水”分離我們可以得知5空瓶=1瓶汽水,也就是5空瓶=1空瓶+1汽水,整理可以得到4空瓶=1汽水。設(shè)自己買的汽水為x,可以得到x+x/4=161,x=128.8,我們知道買的汽水需要是整數(shù)瓶,所以至少需要買129瓶汽水。
二、排列還是組合,你分的清嗎?
【例1】某公司有A、B兩個部門,各部門均有8名員工。公司決定派遣A部門中的兩名員工去參加培訓(xùn),共有( )種不同的派遣方式。
A.28 B.42 C.56 D.63
【詳解】答案:A。對于這個問題我們應(yīng)該用排列數(shù)還是組合數(shù)計算呢?判定的方法就是:改變元素的選取順序,看對結(jié)果是否產(chǎn)生影響。如果有影響就應(yīng)該用排列數(shù),反之無影響,則用組合數(shù)計算。
第一問中要從A部門的8名員工里選擇2名去總部。假如我們選取的兩個人是甲和乙,此時我們會發(fā)現(xiàn),改變選取的順序:無論是先選甲后選乙,還是先選乙后選甲,最后都是甲和乙兩人參訓(xùn),改變順序?qū)Y(jié)果并未產(chǎn)生影響,所以應(yīng)該采用組合數(shù)運算,共有種派遣方式,故選A。
【例2】某公司有A、B兩個部門,各部門均有8名員工。公司打算從B部門中選擇兩位員工分別擔(dān)任部長和副部長,共有( )種不同的選擇方式。
A.28 B. 42 C. 56 D. 63
【詳解】答案:C。這道題公司要從B部門的8名員工里選擇2名分別擔(dān)任正副部長。假如我們選取的兩個人是丙和丁,此時我們會發(fā)現(xiàn),改變選取的順序:先選丙擔(dān)任部長后選丁擔(dān)任副部長,以及先選丁擔(dān)任部長后選丙擔(dān)任副部長,丙和丁的職位發(fā)生了變化,產(chǎn)生了不同的結(jié)果。即改變順序?qū)Y(jié)果并產(chǎn)生了影響,根據(jù)上題所講的判定方法,應(yīng)該采用排列數(shù)運算,共有種派遣方式,故選C。
三、多者合作怎么辦,特值大法來幫忙
方法一:已知多個主體完工時間,一般將工作量設(shè)為1或多個完工時間的公倍數(shù)。
【例1】有兩箱數(shù)量相同的文件需要整理,小張單獨整理好一箱文件要用4.5小時,小錢要用9小時,小周要用3小時。小周和小張一起整理第一箱文件,小錢同時開始整理第二箱文件。一段時間后,小周又轉(zhuǎn)去和小錢一起整理第二箱文件,最后兩箱文件同時整理完畢,則小周和小張、小錢一起整理文件的時間分別是?( )
A.1小時,2小時 B.1.5小時,1.5小時 C.2小時,1小時 D.1.2小時,1.8小時
【解析】答案:A。設(shè)每箱文件的工作量是45,則總的工作量是45×2=90,小張、小錢、小周每小時分別整理10、5、15。由90÷(10+5+15)=3,即3小時后同時完成工作。第一箱文件,小張整理了10×3=30,則小周整理了45-30=15,整理了15÷15=1小時,故本題選A。
方法二:已知多個主體效率關(guān)系時,一般根據(jù)效率關(guān)系將效率最簡比設(shè)為份數(shù)。
【例2】甲、乙兩臺灑水車合作給一片花園灑水,7小時可以完成。兩灑水車共同合作5小時后,甲隊所有隊員及乙隊人數(shù)的調(diào)走去灑其他花園,又經(jīng)過6小時,全部灑完,甲隊單獨給這片花園灑水需要( )小時。
A.12 B.15 C.10 D.20
【解析】答案:A。根據(jù)題意可得,甲、乙合作2小時的工作量和乙的人數(shù)工作6小時的工作量相等,即
=
乙×6,化簡可得甲、乙效率比為7:5。設(shè)甲的效率為7,乙的效率為5,甲隊單獨給這片花園灑水需要7×
。故選A。
四、巧解年齡差不等的年齡問題
如果年齡差不相等,考慮有人未出生
【例1】在一個家庭里,現(xiàn)在所有成員的年齡加在一起是73歲。家庭成員中有父親、母親、一個女兒和一個兒子,父親比母親大3歲,女兒比兒子大2歲。四年前家庭所有人的年齡總和是58歲,現(xiàn)在兒子多少歲?( )
A.3 B.4 C.5 D.6
【解析】答案:A。四個人經(jīng)過4年年齡和應(yīng)該增加4×4=16歲,但是實際為73-58=15歲,年齡差不相等,說明4年前兒子還沒出生,實際年齡差小1歲,說明現(xiàn)在兒子應(yīng)該為4-1=3歲,故本題答案為A。
【例2】小強的爸爸比小強的媽媽大3歲,全家三口的年齡總和是74歲,9年前這家人年齡總和是49歲,那么小強的媽媽今年多少歲?( )
A.32 B.33 C.34 D.35
【解析】答案:A。經(jīng)過9年三人的年齡之和應(yīng)該增加9×3=27歲,但是實際是74-49=25歲,年齡差不相等,說明9年前小強還未出生,實際年齡差小2歲,說明小強現(xiàn)在應(yīng)該是9-2=7歲,則今年爸爸、媽媽年齡之和是74-7=67歲,爸爸比媽媽大3歲,則媽媽年齡是(67-3)÷2=32歲,故本題答案為A。
【例3】一個三口之家,爸爸比媽媽大3歲,現(xiàn)在他們一家人的年齡之和是80歲,10年前全家人的年齡之和是51歲,則女兒今年多少歲?( )
A.7 B.8 C.9 D.10
【解析】答案:C。經(jīng)過10年一家三口的年齡之和應(yīng)該增加3×10=30歲,但是實際是80-51=29歲,年齡差不相等,說明女兒10年前沒有出生,實際年齡差小1歲,說明女兒現(xiàn)在應(yīng)該是10-1=9歲,故本題答案為C。
五、數(shù)量關(guān)系之青蛙跳井問題
一、基本模型
【例1】現(xiàn)有一口深10米的井,有一只青蛙在井底,青蛙每次往上跳的高度為5米,由于井壁比較光滑,青蛙跳一次就會往下滑3米,問這只青蛙經(jīng)過幾次才能跳出這口井?( )
A.3 B.4次 C.5次 D.6次
【解析】答案:C。閱讀題干,若青蛙往上跳5米為正,則往下滑3米為負(fù),一正一負(fù)的交替上升。將一正一負(fù)作為一個周期,則一個周期內(nèi)升5 (-3)=2米。一個周期內(nèi)上跳1次,有的同學(xué)認(rèn)為10÷2=5,即跳5次就可以出井,事實上這是不對的。我們可以確定的是,青蛙是在上跳的過程中出井,而不是在下滑的過程中。那么我們就要在井口預(yù)留一個一下能跳出的距離(5米,即周期峰值),當(dāng)青蛙跳到離井口5米之內(nèi),再跳一次就可以跳出井。總高度是10米,一個周期前進(jìn)2米,(10-5)÷2=2.5,兩個周期不能滿足,即需要三個周期跳到離井口5米范圍內(nèi),一個周期需要跳一次,三個周期即跳三次,此時青蛙再上跳一次即可跳出井口,即一共需要3+1=4次跳出井口。
總結(jié)一下解題方法:
1.找周期:周期值和周期峰值
2.計算周期數(shù)
3.計算總次數(shù)??偞螖?shù)=周期所用次數(shù) 周期峰值所用次數(shù)。
二、青蛙跳井的應(yīng)用
【例1】甲乙兩人計劃從A地步行去B地,乙早上7:00出發(fā),勻速步行前往,甲因事耽誤,9:00才出發(fā)。為了追上乙,甲決定跑步前進(jìn),跑步的速度是乙步行的2.5倍,但是跑半小時都需要休息半小時,那么什么時候才能追上乙?( )
A.10:20 B.12:10 C.14:30 D.16:10
【解析】答案:C。閱讀題干,結(jié)合2.5倍關(guān)系,設(shè)乙的速度為2,則甲的速度為5。乙出發(fā)2小時后,甲才出發(fā),此時兩人相距4,甲比乙多跑4就能追上乙。甲每跑半小時都需要休息半小時,則前半小時,甲比乙多跑(5-2)×0.5=1.5,后半小時,甲比乙多跑(0-2)×0.5=-1。
(1)找周期:一個周期1個小時,一個周期時間內(nèi)甲追乙距離:1.5-1=0.5,即周期值為0.5;周期峰值為1.5;
(2)計算周期數(shù):(4-1.5)÷0.5=5,即5個周期;
(3)計算總時間。經(jīng)過5個周期后還差1.5就可以追上,此時再經(jīng)過半小時即可追上,總時間為5+0.5=5.5小時。所以9:00再過5.5小時就可以追上,即14:30追上。
六、如何學(xué)習(xí)數(shù)字推理
(一) 數(shù)字敏感
所謂數(shù)字敏感指的是我們見到數(shù)字后的發(fā)散性思維。當(dāng)我們看到一個數(shù)時,能夠下意識的聯(lián)想到一些特殊數(shù)或者找到數(shù)本身的屬性或者是其他的表達(dá)形式。對與特殊數(shù)字臨近的數(shù)字要產(chǎn)生聯(lián)想,比如看到數(shù)字7,7可以聯(lián)想成:7=23-1=32-2.要想真正地培養(yǎng)出對數(shù)字的敏感度,還是在于我們平時對于一些特殊數(shù)字的積累。主要是一些多次方數(shù):
(1)1~21的二次方
11=121 12
=144 13
=169 14
=196 15
=225
16=256 17
=289 18
=324 19
=361 21
=441
(2)1~11的三次方
2=8 3
=27 4
=64 5
=125 6
=216
7=343 8
=512 9
=729 10
=1000 11
=1331
(3)2的1~10次方
2=16 2
=32 2
=64 2
=128 2
=256
2=512 2
=1024
(4)1~5的1至5次方
3=9 3
=27 3
=81 3
=243
4=16 4
=64 4
=256 4
=1024
5=25 5
=125 5
=625 5
=3125
(二)數(shù)列敏感
所謂的數(shù)列敏感,指的是我們考試的時候,考題的題干往往是以一個不完整的數(shù)列給出的,所以這時候當(dāng)我們看到一個數(shù)列時,我們要在腦海里快速地反映出??嫉南嚓P(guān)相近數(shù)列,這樣能夠幫助我們分析確定考查的是哪一類型數(shù)列或數(shù)列變式,從而根據(jù)我們給大家總結(jié)的數(shù)列規(guī)律來快速解題。數(shù)字推理主要考查的數(shù)列類型有:等差數(shù)列、和數(shù)列、倍數(shù)數(shù)列、乘積數(shù)列、多次方數(shù)列、分式數(shù)列、組合數(shù)列等。
1.等差數(shù)列
等差數(shù)列題型特征:數(shù)列一般單調(diào)遞增,相鄰兩數(shù)字變化不大(相差1-3倍),常常給出5個及以上數(shù)。
等差數(shù)列解題方法:逐差法(一次或多次)。
【例1】2,6,12,20,30,( )
【解析】先觀察,由于給出的數(shù)列相鄰數(shù)字之間變化幅度不大且呈現(xiàn)出單調(diào)性,因此我們考慮是否考查的是等差數(shù)列,接下來我們就去逐差,經(jīng)過一次逐差后,我們發(fā)現(xiàn)新形成的數(shù)列為4,6,8,10,(12)是一個偶數(shù)列,因此此題的答案為30+12=(42)。
2.和數(shù)列
和數(shù)列題型特征:數(shù)列一般前幾個數(shù)為小數(shù)字且相鄰數(shù)字之間變化幅度不大。
和數(shù)列解題方法:相鄰兩項或三項相加得到后項找出規(guī)律。
【例2】-1,2,0,4,4,( )
【解析】先觀察,相鄰數(shù)字之間變化幅度不大,可以優(yōu)先考慮逐差或加和,我們經(jīng)過試錯會發(fā)現(xiàn),這個題目考的是和數(shù)列,將相鄰兩項相加可以得到一個新數(shù)列:1,2,4,8(16),是一個公比為2的等比數(shù)列。因此括號里應(yīng)該填16-4=(12)。
3.倍數(shù)數(shù)列
倍數(shù)數(shù)列題型特征:大部分呈單調(diào),變化幅度稍大。
倍數(shù)數(shù)列解題方法:先看大數(shù)規(guī)律。
【例3】2,14,84,420,1680,( )
【解析】先觀察,我們會發(fā)現(xiàn)整體變化幅度還是比較大的,所以這種情況下我們一般不考慮逐差或加和,我們會發(fā)現(xiàn)1680和前面的420剛好是4倍的關(guān)系,往前再推,420與84是5倍的關(guān)系,因此此題我們將相鄰兩項用后一項除以前一項,可以得到一個新數(shù)列:7,6,5,4,(3),這是一個首項為7,公差等于-1的等差數(shù)列,因此括號里應(yīng)填的是1680×3=(5040)。
4.乘積數(shù)列
乘積數(shù)列題型特征:大部分呈單調(diào),變化幅度較大。
乘積數(shù)列解題方法:將相鄰兩項或三項乘積之后再找規(guī)律。
【例4】4,3,10,27,265,( )
【解析】先觀察,我們會發(fā)現(xiàn)此題既不是考查等差數(shù)列、和數(shù)列,也不是倍數(shù)數(shù)列,我們通過觀察會發(fā)現(xiàn)10,27,265這三個數(shù)存在10×27-5=265這樣的一個乘積關(guān)系,往前推,3,10,27這三個數(shù)存在3×10-3=27,依次往前推,我們會發(fā)現(xiàn)此題的規(guī)律是從第三項開始,每一項=前面兩項之積-質(zhì)數(shù)列。因此括號里要填的是27×265-7=(7148)。