久久国产精99精产国高潮|国产视频一二区|中文人妻精品一区二区三区四区!|福利在线第一页高清区无码在线

banner_ad_1
行測(cè):數(shù)量關(guān)系公式大全+考點(diǎn)匯總
2024-01-30 17:45
來源:政華公考

行測(cè):數(shù)量關(guān)系公式大全+考點(diǎn)匯總

公式大全

裂項(xiàng)相消

 

乘方尾數(shù)

①指數(shù)除以4,留余數(shù)(如果余數(shù)為0,則看成4);

②底數(shù)留最末位。

3為例,從1次方開始尾數(shù)分別為3、9、7、1、3、9、7、1、3、9、7、1······,從這里可以看出,3的冪次由低到高尾數(shù)分別為3、9、7、1四個(gè)數(shù)字循環(huán),因此要求3n的尾數(shù),只要看n÷4余數(shù)是幾就可以確定n次方尾數(shù)會(huì)是3、9、7還是1了。

星期日期

平年閏年判定:四年一閏,百年不閏,四百年再閏。

大小月:大月31天1、3、5、7、8、10、12,小月30天4、6、9、112月28天29天。

分?jǐn)?shù)比例

a:b=m:n(m、n互質(zhì)),

a是m的倍數(shù),b是n的倍數(shù);

a=m/n×b,則a=m/(m+n)×(a+b),即a+b是m+n的倍數(shù)。

尾數(shù)法

選項(xiàng)尾數(shù)不同,且運(yùn)算法則為加、減、乘、乘方運(yùn)算,優(yōu)先使用尾數(shù)進(jìn)行判定。

等差數(shù)列

=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2=平均數(shù)×項(xiàng)數(shù)=中位數(shù)×項(xiàng)數(shù);

項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷項(xiàng)數(shù)+1。從1開始,連續(xù)的n個(gè)奇數(shù)相加,總和=n×n,如:1+3+5+7=4×4=16,……

幾何邊端

單邊線型植樹公式兩頭植樹

棵樹=總長(zhǎng)÷間隔+1;

總長(zhǎng)=(棵樹-1)×間隔。

單邊環(huán)型植樹公式環(huán)型植樹

棵樹=總長(zhǎng)÷間隔;

總長(zhǎng)=棵樹×間隔。

單邊樓間植樹公式兩頭不植

棵樹=總長(zhǎng)÷間隔-1;

總長(zhǎng)=(棵樹+1)×間隔。

植樹不移動(dòng)公式:

在一條路的一側(cè)等距離栽種m棵樹,然后要調(diào)整為種n棵樹,則不需要移動(dòng)的樹木棵數(shù)為:(m-1)與(n-1)的最大公約數(shù)+1棵。

方陣問題:

最外層總?cè)藬?shù)=4×(N-1);

相鄰兩層數(shù)量相差8;

n階方陣的總?cè)藬?shù)為n*n。

行程問題

火車過橋核心公式:

路程=橋長(zhǎng)+車長(zhǎng)(火車過橋過的不是橋,而是橋長(zhǎng)+車長(zhǎng))。

相遇追及問題公式:

相遇距離=(速度1+速度2)×相遇時(shí)間追及距離=(速度1-速度2)×追及時(shí)間。

隊(duì)伍行進(jìn)問題公式:

①隊(duì)首→隊(duì)尾:

隊(duì)伍長(zhǎng)度=(人速+隊(duì)伍速度)×?xí)r間。

②隊(duì)尾→隊(duì)首:

隊(duì)伍長(zhǎng)度=(人速-隊(duì)伍速度)×?xí)r間。

流水行船問題公式:

順?biāo)伲酱伲?,逆速=船速-水速?/span>

往返相遇問題公式:

①兩岸型兩次相遇:

S=3S1-S2,(第一次相遇距離A為S1,第二次相遇距離B為S2)。

②單岸型兩次相遇:

S=(3S1+S2)/2,(第一次相遇距離A為S1,第二次相遇距離A為S2);

③左右點(diǎn)出發(fā):

N次迎面相遇,路程和=(2N-1)×全程;

N次追上相遇,路程差=(2N-1)×全程。

④同一點(diǎn)出發(fā):

N次迎面相遇,路程和=2N×全程;

N次追上相遇,路程差=2N×全程。

等距離平均速度:

 

幾何特性

三角形三邊關(guān)系公式:

兩邊之和大于第三邊,兩邊之差小于第三邊。

直角三角形勾股定理:

直角三角形中,兩直角邊的平方和等于斜邊的平方;常用勾股數(shù):(3、4、5)(5、12、13)(6、8、10)。

內(nèi)角和定理:

正多邊形內(nèi)角和定理,n邊形的內(nèi)角的和等于:(n-2)×180°n≥3且為整數(shù));

已知正多邊形內(nèi)角度數(shù),則其邊數(shù)為:360°÷(180°-內(nèi)角度數(shù))。

幾何面積和體積:

①長(zhǎng)方體的表面積=2ab+2ac+2bc②梯形面積

 

③球的表面積

 

④三角形面積

 

⑤平行四邊形面積

 

⑥圓柱的表面積

 

⑦球的體積

 

⑧圓柱的體積

 

⑨椎體的體積

 

若將一個(gè)圖形尺度擴(kuò)大為N倍,則:對(duì)應(yīng)角度不變;對(duì)應(yīng)周長(zhǎng)變?yōu)樵瓉淼腘倍;面積變?yōu)樵瓉淼腘*N倍;體積變?yōu)樵瓉淼腘*N*N倍。

經(jīng)濟(jì)利潤(rùn)

利潤(rùn)=售價(jià)-進(jìn)價(jià);

利潤(rùn)率=利潤(rùn)÷進(jìn)價(jià);

總利潤(rùn)=單利潤(rùn)×銷量售價(jià)=進(jìn)價(jià)+利潤(rùn)=原價(jià)×折扣。

溶液?jiǎn)栴}

溶液=溶質(zhì)+溶劑;

濃度=溶質(zhì)÷溶液;

溶質(zhì)=溶液×濃度混合溶液的濃度=(溶質(zhì)1+溶質(zhì)2)÷(溶液1+溶液2)。

考點(diǎn)匯總

基礎(chǔ)應(yīng)用題

基礎(chǔ)應(yīng)用題是考試中的高頻題型,主要用方程法解題。難點(diǎn)在于找到題目中的等量關(guān)系或者每個(gè)量之間的相互聯(lián)系,找到彼此的關(guān)聯(lián)才是解題最重要的一步。

主要考查一元一次方程、二元一次方程注意二元一次方程的常用解法——消元法。

經(jīng)濟(jì)利潤(rùn)問題

利潤(rùn)=單價(jià)-成本;期望利潤(rùn)=定價(jià)-成本實(shí)際利潤(rùn)=售價(jià)-成本;

利潤(rùn)率=利潤(rùn)/成本=(售價(jià)-成本)/成本=(售價(jià)/成本)-1;

售價(jià)=定價(jià)×折扣“二折”即售價(jià)為定價(jià)的20%);

總售價(jià)=單價(jià)×銷售量總利潤(rùn)=單件利潤(rùn)×銷售量。

行程問題

基本行程公式路程S=速度V×?xí)r間T。

等距離平均速度公式

 

流水行船問題順流航程S順=V+V×順流時(shí)間T。

相遇追及問題主要考查兩端或單端出發(fā)的單次或多次相遇或追及時(shí)各個(gè)量之間的邏輯關(guān)系。

直線型兩端出發(fā)n次相遇共同行走距離=2n-1×兩地初始距離;

直線型單端出發(fā)n次相遇共同行走距離=2n×兩地初始距離;

環(huán)線型n次相遇共同行走的距離=n×環(huán)線長(zhǎng)度。

工程問題

工程問題核心公式工作總量=工作效率×工作時(shí)間。

工程問題??碱}型

基礎(chǔ)公式型用核心公式解題,常用方程法

給定時(shí)間型賦值法解題,給工作總量賦值

效率制約型賦值法解題,給效率賦值。

幾何問題

幾何問題??计矫鎺缀巍⒘Ⅲw幾何和幾何構(gòu)造。

平面幾何要求掌握三角形、正方形、矩形、圓形等周長(zhǎng)、面積公式及幾何性質(zhì)。

立體幾何要求掌握正方體、長(zhǎng)方體、球、圓柱、圓錐等立體圖形表面積和體積公式及幾何性質(zhì)。

幾何構(gòu)造是考試中比較難的題型,常用幾何最值理論、幾何性質(zhì)等相關(guān)知識(shí)解題。

組合排列問題

排列有序A計(jì)算,關(guān)鍵詞“排序”

組合無序,C計(jì)算關(guān)鍵詞“選擇”;

分步用乘法計(jì)算

分類用加法計(jì)算;

捆綁法“必須挨著”,先整體后內(nèi)部;

插空法“不能挨著”,將不能挨著的插入到無要求中去

隔板法“將m個(gè)相同元素分成n份,每份至少分1個(gè)”通式為C。

概率問題

核心公式概率=滿足條件的情況數(shù)÷總情況數(shù)。

??碱}型

基礎(chǔ)公式概率:用核心公式解題;

枚舉概率:用枚舉法輔助求解概率

分步分類概率:分步概率用乘法、分類概率用加法

比賽概率:按最終獲勝比分進(jìn)行分類的概率;

反向概率:“正難則反”,1-反向概率。

最值問題

1.多集合反向構(gòu)造

題目特征出現(xiàn)“都……至少……”,“至少……都……”

解題方法反向—加和—作差

2.最不利構(gòu)造

題目特征出現(xiàn)“至少最少……保證……”

解題方法最不利的情形+1

3.數(shù)列構(gòu)造

題目特征出現(xiàn)“最多……最少……”“排名第……最多……”

解題方法排序—定位—構(gòu)造—求和

容斥問題

1.兩集合容斥問題:

題目特征:題目中僅有兩個(gè)條件

公式:總體I=A+B-AB都滿足+AB都不滿足

2.三集合容斥問題:

①三集合標(biāo)準(zhǔn)型

題目特征題目中有三個(gè)條件,滿足AB、滿足BC、滿足AC

公式總體I=A+B+C-滿足AB-滿足AC-滿足BC+ABC都滿足+ABC都不滿足

②三集合非標(biāo)準(zhǔn)型

題目特征題目中有三個(gè)條件,滿足其中兩個(gè)的、三個(gè)都滿足的

公式總體I=A+B+C-只滿足兩個(gè)條件-2×滿足三個(gè)條件+都不滿足


微信
QQ
公眾號(hào)
微博
聯(lián)系電話